Data Infrastructure for Massive Scientific Visualization and Analysis

James Ahrens & Christopher Mitchell

Los Alamos National Laboratory

Large Data in High Performance Computing

- HPC users are simulating the world to better understand it and the products we use.
 - Climate, High Energy Physics, Defense Problems, etc.
- Current simulations are detailed enough to produce hundreds of TB if not PB of data.
- Raw data is useless without analysis and/or visualization.

A Scalable Open-source Visualization and Analysis Tool - ParaView

- ParaView http://www.paraview.org
 - Integrated analysis and visualization platform for highperformance computing
 - Data Parallelism
 - Works well due to massive size of each dataset
 - Data Streaming
 - Incrementally process what is requested
 - Multi-Resolution
 - Immediate reduced resolution results
 - Full resolution streams in over time

Example: Plasma Data in ParaView

Integration with Data Intensive Technologies

- Project initiated to rethink I/O in ParaView and storage for HPC analytics.
- Currently use Parallel File System to access data via a storage network
- Data too expensive to ship from storage to processor
 - No longer "interactive" to user
- Rewrote ParaView reader to interface with the Hadoop Distributed File System.
- Process data in situ to where it is stored.
- Key is scheduling algorithm
 - Match nodes with data to ParaView processes
 - No network transfers!

Integration with Data Intensive Technologies

- Seeing near 3x
 improvement in read
 times compared to
 existing solutions.
 - What previously took ~1.5 seconds to load can be done in less than 0.5 seconds per time step!
- Lower standard deviation on results
 - More consistent read times.

